SCORE: ____/ 2 PTS

AN ELLIPSE IS THE LOCUS OF POINTS IN THE PLANE WHOSE DISTANCES TO TWO FIXED POINTS (CALLED THE FOCI) ADD UP TO A FIXED CONSTANT

GRADED BY ME

Find the center, foci, vertices and eccentricity of the ellipse $3x^2 + 2y^2 - 12x + 16y + 8 = 0$.

SCORE: ____/ 5 PTS

$$C^{2} = 18 - 12 = 6$$

$$C = \sqrt{6} \cdot (2)$$

$$Foc1 = (2 - 4 + \sqrt{6})$$

$$e = \sqrt{6} = \sqrt{3} \cdot (3)$$

$$\sqrt{18} = \sqrt{3} \cdot (3)$$

Find the equation of the parabola with focus (-11, 5) and directrix x = 3.

SCORE: _____/ 3 PTS

$$VERTEX = (-11+3) = (-4,5) =$$

- [a] The line passing through the focus and vertex of a parabola is called the AXIS OF SYMMETRY
- [b] The line segment joining the vertices of an ellipse is called the MAJOR AXIS I

Find the vertex, focus and equation of the directrix of the parabola $x^2 + 10x + 2y + 7 = 0$.

SCORE; ____/ 4 PTS

$$x^{2}+10x = -2y-7$$
 $x^{2}+10x+25 = -2y+18$

(1) $(x+5)^{2}_{1} = -2(y-9)_{1}$

VERTEX = $(-5,9)_{1}$
 $4p = -2 - p = -\frac{1}{2}$
 $4p = -2 - p = -\frac{1}{2}$

DIRECTIZIX

 $y = 9+\frac{1}{2}$

(2) $y = \frac{19}{2}$

(3) $y = \frac{19}{2}$

Find the equation of the ellipse with foci (4, -7) and (-2, -7), and a major axis of length 18.

SCORE: _____ / 4 PTS

CENTER =
$$(4+\frac{2}{2}, -7) = (1, -7)$$

 $9^2 = 3^2 + b^2$
 $b^2 = 81 - 9 = 72$
 $(x-1)^2 + (y+7)^2 = 1$
 (2)